Applying Fuzzy Hypothesis Testing to Medical Data

نویسندگان

  • Mark Last
  • Adam Schenker
  • Abraham Kandel
چکیده

Classical statistics and many data mining methods rely on “statistical significance” as a sole criterion for evaluating alternative hypotheses. In this paper, we use a novel, fuzzy logic approach to perform hypothesis testing. The method involves four major steps: hypothesis formulation, data selection (sampling), hypothesis testing (data mining), and decision (results). In the hypothesis formulation step, a null hypothesis and set of alternative hypotheses are created using conjunctive antecedents and consequent functions. In the data selection step, a subset D of the set of all data in the database is chosen as a sample set. This sample should contain enough objects to be representative of the data to a certain degree of satisfaction. In the third step, the fuzzy implication is performed for the data in D for each hypothesis and the results are combined using some aggregation function. These results are used in the final step to determine if the null hypothesis should be accepted or rejected. The method is applied to a real-world data set of medical diagnoses. The automated perception approach is used for comparing the mapping functions of fuzzy hypotheses, tested on different age groups (“young” and “old”). The results are compared to the “crisp” hypothesis testing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE

This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...

متن کامل

A New Method for Sperm Detection in Infertility Cure: Hypothesis Testing Based on Fuzzy Entropy Decision

In this paper, a new method is introduced for sperm detection in microscopic images for infertility treatment. In this method, firstly a hypothesis testing function is defined to separate sperms from plasma, non-sperm semen particles and noise. Then, some primary candidates are selected for sperms by watershed-based segmentation algorithm. Finally, candidates are either confirmed or rejected us...

متن کامل

LINEAR HYPOTHESIS TESTING USING DLR METRIC

Several practical problems of hypotheses testing can be under a general linear model analysis of variance which would be examined. In analysis of variance, when the response random variable Y , has linear relationship with several random variables X, another important model as analysis of covariance can be used. In this paper, assuming that Y is fuzzy and using DLR metric, a method for testing ...

متن کامل

OPTIMAL STATISTICAL TESTS BASED ON FUZZY RANDOM VARIABLES

A novel approach is proposed for the problem of testing statistical hypotheses about the fuzzy mean of a fuzzy random variable.The concept of the (uniformly) most powerful test is extended to the (uniformly) most powerful fuzzy-valued test in which the test function is a fuzzy set representing the degrees of rejection and acceptance of the hypothesis of interest.For this purpose, the concepts o...

متن کامل

Bayesian Fuzzy Hypothesis Testing with Imprecise Prior Distribution

This paper considers the testing of fuzzy hypotheses on the basis of a Bayesian approach. For this, using a notion of prior distribution with interval or fuzzy-valued parameters, we extend a concept of posterior probability of a fuzzy hypothesis. Some of its properties are also put into investigation. The feasibility and effectiveness of the proposed methods are also cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999